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On the interactions of slender ships in shallow water 
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The unsteady hydrodynamic interaction of two bodies moving in a shallow fluid is 
examined by applying slender-body theory. The bodies are assumed to be in each 
other’s far field and the free surface is assumed to be rigid. By matched asymptotics, 
the inner and outer problems are formulated and a pair of coupled int,egro-differential 
equations for determining the unknown cross-flows is derived. The degree of coupling 
is shown to be related to a bottom-clearance parameter. Expressions are given for the 
unsteady sinkage force, trimming moment, sway force, and yaw moment. Numerical 
calculations for two weakly coupled cases are presented. One corresponds to the 
interaction of a stationary body with a passing one, the other to the interaction of two 
bodies moving in a steady configuration. Theoretical results are compared with 
existing experimental data. 

1. Introduction 
The subject of hydrodynamic interaction between bodies moving in close proximity 

has been of classical interest, for there are practical situations in which interaction 
forces and moments play a dominant role. Proximity manoeuvres of naval vessels, 
collision-course encounters of ships, and congested vessel traffic in harbours are a few 
of such situations. The interaction phenomenon is generally aggravated by the effects 
of shallow water. The advent of super-tankers has made the consideration of these 
effects imperative. 

A brief review of past analytical work on hydrodynamic interactions between ships 
will be given. The problem of two spheroids in tandem motion in a deep fluid was 
examined by Havelock as early as 1949. Exploiting the slender-body assumptions, 
Newman (1965) presented closed-form results for a spheroid moving near a wall. Wang 
(1975) developed a slender-body model for the prediction of mooring forces on a sta- 
tionary ship due to a passing one. The effects of finite depth were also examined 
under the assumption that the depth was of the same order as the ship length. Tuck & 
Newman ( 1974) considered a similar approach, but allowed both ships to have non-zero 
speeds. Collatz (1963) solved the exact potential-flow problem of two elliptical cylinders 
in unsteady motion. King (1977) considered the same problem but with the effects of 
circulation included. In these last two studies, the assumption of two-dimensionality 
is equivalent to representing the vessels by airfoils. A related mathematical model used 
by Dand (1976) appears to give excessively large forces and moments when compared 
with experimental values. All studies cited are based on inviscid-flow theory with 
a rigid free-surface condition. 

The approach used in this paper is based on the theory of matched asymptotics. 
The three-dimensional problem of two ships moving in a shallow fluid is first recast, into 
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FIGURE 1. Co-ordinate systems. 

two inner problems and one outer problem. Section 2 describes all essential conditions 
associated with the out'er problem. Section 3 considers the inner problem and its outer 
limit. The matching process is carried out in $4. The interaction hydrodynamic forces 
and moments are next derived for both the vertical and the horizontal plane. The 
solutions for kwo special cases are considered in $6. Some numerical results are pre- 
sented and discussed in $7. 

2. Problem formulation 
Consider two vessels designated as bodies 1 and 2 moving at speeds U, and U2 in an 

inviscid fluid of depth h. At the outset, the free surface is assumed to be rigid, which 
implies that the effects of waves are neglected. This is known to be a plausible assump- 
tion if the depth Froude number is small, i.e. q / (gh)*  = o(e) ( j  = 1,2),  where g is the 
acceleration due to gravity and E a small parameter. Therefore the rigid free-surface 
problem formulated below may be regarded as the infinite-gravity limit of the more 
general problem where wave effects are important, or as the leading-order problem 
corresponding to a low-speed perturbation analysis. Such a free-surface condition 
reduces the problem to the determination of the flow about the two bodies and their 
images above the free surface, sandwiched between parallel walls a distance 2h apart. 

Let O,xjyjzj ( j  = 1,2)  be two moving co-ordinate systems attached to the vessels 
as shown in figure 1.  Let Oxyz be a third co-ordinate system fixed in space. If V$(x, y, z, t) 
denotes the absolute velocity of the fluid particles due to the motion of the bodies, then 
the following 'exact' boundary-value problem for the velocity potential $ can be 
formulated: 

V2$@, Y, z, t )  = 0, (1)  

[WnIa,,t, = ?t(%)l, ra$/~nIa,,, = U2(nz)2, (2) 
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where (nJj represents the x component of the interior normal to the body surface gj(t). 
The relation between the two moving co-ordinate systems is straightforward, viz. 

(4) Zl = 2 2  + st( t ) ,  y1 = yz + sp, 

where st is the stagger and sp the separation, both measured with respect to the origin 
0,. The following assumptions of slenderness are now introduced to simplify the 
problem : 

Lj = O(l) ,  Bj = O(€),  q = O(6) ( j  = 1,2),  ( 5 )  

h = O ( € ) ,  sp = O(1). (6), (7) 

Equations ( 5 )  and (6) justify the application of slender-body theory. Assumption (7) 
permits the use of the so-called outer representation of one ship when the observer 
is near the other. The shallow-fluid assumption (6) also implies that, if the present 
zero-Froude-number theory were to be applied to situations in which Fh = o(e) ,  the 
conventional Froude number based on ship length could be o(s3). 

The boundary-value problem (1)-(3) will now be recast into two inner problems, 
one for each body, and an outer problem. This procedure is similar to that used by Tuck 
(1966). Hence only a brief summary will be given. 

Let q and Zj be the inner variables near the j t h  body stretched according to 
5 = yi/e and Zj = z i / e .  Then, to leading order, the following problems for the inner 
potential Oj (j = 1 , 2 )  can be easily derived by using (1)-(3) : 

(P/aY? + a2/aZj) a&, Zj, xj, t )  = o for (q, Zi) near gi, (8) 

Here N represents the unit two-dimensional interior normal to the section contour Zf. 
It can be seen that the inner potentials Oj satisfy Laplace’s equation in the cross-plane, 
a flux condition on the cross-section contour and a no-flux condition on the walls. The 
time dependence of Qj arises from the fact that the flow incident upon a particular 
section of the j t h  ship is a function of the stagger st, which changes with time. This 
inner problem is illustrated in figure 2, wherein it is noteworthy that the cross-flow 
V*(xj, t )  is unknown and its order of magnitude will depend on the blockage charac- 
teristics of the cross-section. This point will be addressed in a later section. 

For the outer problem, x and y are both O(l) ,  however z is O(B). If q5 is written in 
terms of an expansion of the form 

# = $W(z, y, 2, t )  + p + $3) + 4(4)  + . . . , 
where it is assumed that @n+l) = o(qYn)) for all n, then (1) yields 

4:;) = 0, 4::) = 0, &)* (4) = - v;, 1/ p m .  

and @), however, cannot depend on z because of (3). If (3) is next applied to #3) and 
@a), the governing equations for qW) and qY2) can be obtained: 

V:,,@)(x,y,t) = 0 (i = 1 , 2 ) .  (11 )  
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FIGURE 2. The flow near the hull in a cross-flow plane. 

Therefore the first two terms of the outer expansion satisfy Laplace's equation in the 
horizontal plane. The body boundary condition ( 2 )  is not applicable to the outer 
problem since to an observer O(L) away from the bodies they would appear to have 
collapsed onto a line. 

Only the solution of the lowest-order problem will be sought in this paper. With that 
as the understanding, the superscript 1 will henceforth be omitted. The two-dimen- 
sionality of the outer flow suggests the following representation of $ in terms of line- 
source and line-vortex distributions: 

where the longitudinal axes of the two ships are assumed to be at y = & isp and 
[a;, uf] denotes the instantaneous location of thejth ship. In (12), the branch cut of the 
arctangent function should be chosen downstream of the translating vortices. The 
unknown source and vortex strengths m and y cannot be determined from the outer 
problem alone. However, by matching the inner and outer solutions properly the 
necessary relations can be obtained. 

It is worthwhile to note that the unsteadiness of the problem gives rise to a vortex 
distribution in the wake of the bodies. Inasmuch as the outer flow is two-dimensional, 
existing analysis and conditions concerning the unsteady motion of a two-dimensional 
airfoil (see Garrick 1957) are applicable here. In  particular, the linearized pressure- 
continuity condition across the two-dimensional wake is given by 

p+-p- = a[$(z,y, = o+,t)-$(x,yj = O - , t ) ] / a t  = 0 for x < uj-(t). (13) 

On the other hand, by definition, 

y,(z, t )  = a$@, yj = o+, t,/ax- a$(x, yj = 0-, t p x .  (14) 

ay,(z, t ) /at  = 0 or yj(x, t )  = y,(x) for x c u;(t). (15) 

Equation (1 3) thus implies 
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Whence any vorticity shed in the wake remains constant in time and depends only on 
the wake co-ordinate in the inertial frame of reference. The rate at which vorticity is 
being shed by each body can be derived from Kelvin’s theorem, which can be inter- 
preted as follows. The circulation due to any material contour that encloses each body 
individually should be zero at any time since the initial circulation when the bodies 
were far apart was identically zero. Thus any gain in the bound circulation l?, of the 
body must be compensated by &shedding of vorticity of opposite sign. Whence, accord- 
ing to von K&rm&n & Sears (1938), it is possible to show that 

Finally, to ensure uniqueness of the solution, we note the important subsidiary trailing- 
edge condition, which requires that the flow at the trailing edge be smooth. This Kutta 
condition can be stated as 

lim y j (x , t )  = lim yj(x,t)  for all t. 
z+aj- - 0 z-wj-+o 

Numerical procedures for solving two-dimensional outer problems involving multiple 
bodies have been presented by Giesing (1968) and recently by King (1977). 

3. The inner problems 
It is convenient to decompose the inner problem defined by (8)-(10) into two 

component potentials, one associated with the forward motion and the other with the 
lateral flow, &s follows: 

@j(T, zj, xj, t )  = @$I) + V?(.j, t )  @$2) +&.(Xi, t )  

with a@\l)/aN = V,nz(T,Zj) on Ef, (19) 

a@i2)/aN = o on Ef. (20) 

(18) 

I n  addition, both potentials should satisfy (10). It is clear that the inhomogeneous 
boundary condition is satisfied by @?) and that @j2) corresponds to the problem of unit 
lateral flow about a cylinder located between walls. The non-uniqueness of the inner 
problem asserts itself in the form of the unknown functions V? and fj(xj, t). 

is O(e2) with respect to outer variables. The 
magnitude of can be estimated from the behaviour of the added mass of the 
cylinder. The following asymptotic formula for a rectangular cross-section with a small 
bottom clearance was given by Flagg & Newman (1971): 

By examining (9), one notes that 

A,(x) = B x  2 4h2[~)+-(i-log48,)-$(1-8,)+0(8;)] B 2Sjh 7~ 

= O ( E 2 / a j ) ,  

where Aj(x) is the ‘double-body ’ added-mass coefficient and 8, = (h - q ) / h .  Hence 
is O( V * d i l ) .  In  arriving at  the second equality in (21), it was necessary to invoke 

( 5 )  and (6). As far as completing the matching process is concerned, it is not necessary 
to solve for these potentials in detail, but a knowledge of their outer behaviour is 
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FIGURE 3. Kutta condition a t  an abrupt trailing edge. 

required. In  some intermediate region where 5 = O(L,), (18) can easily be shown 
to be 

lim @,(q, Z,, q, t )  
Y I - 4  L] 

= (-  qS;(x,) /4h)  151 + V,*[q  C,(x,)] + f,(x,, t )  for u; 6 x, Q u;' 
O(4 O( vi* €pi) O(fj) (22) 

with the order of fj to be determined from matching. In  (22), S, is the area enclosed 
by Z? and Cj is the blockage constant used frequently to characterize a lateral flow 
about cascades (Sedov 1965): 

C,(x) = (A&) + 4(z))/4h. (23) 

Next, consider zj lying in the wake region of the j t h  body. Clearly, the term @") in 
(18) should be omitted. If the body is assumed to terminate in the form of a thin and 
abrupt trailing edge (figure 3) a vortex sheet will be shed downstream of this edge. By 
Green's theorem, the perturbation potential 6 associated with the lateral flow potential 

(j = 1,2)  can be written as 

[$(O- ,  2) - &O+, Z)]g d 2  + f, r&) G ds for x = u; + 0, 

(24) 

[&O-, 2) - &O+, Z)lndZ aG - $z,wm a4 Gds for z = a; - 0. (25) 

In  (25), ds is an infinitesimal arc-length element and G is a Green function satisfying 
the wall conditions. In  the spirit of slender-body theory, Newman t Wu (1972) have 
proposed a Kutta condition of a weak type to be imposed at such a trailing edge. This 
condition is congruent to requiring the potential be locally continuous at  the juncture 
of Xy and XF. Thus it follows that the first terms on the right-hand sides of (24) and 
(25) are identical. From geometrical considerations, the second term of both equations 
vanishes. Hence one arrives at the following outer behaviour of the inner potential 
in the wake: 



Interactions of slender ships in shallow water 149 

where ,!is the retarded time defined by ,! 3 t + (xj - a;)&. The retarded time arises as 
a result of the linearized dynamic boundary condition on the vortex sheet: 

m j / a t  - q aQj/axj = 0, (27 ) 

where a'/at indicates differentiation with respect to time in the moving frames. It is of 
interest to note that the presence of the vortex sheet offers an apparent added-mass 
effect even though there is no physical obstruction in the fluid. 

4. Matching 
In  order to match the outer solution with the inner solution described by (22) and 

(26), it will be necessary to obtain an inner expansion of (12) near each body. For 
clarity of exposition, consider first the case when y1 ( = y - $s,) is small. In  the co- 
ordinate system of body 1, 

f@1, Y1, t )  = $(%, o*, 4 + a+(x', o*, t ) / k ? l ' +  O(Y2,) 

for a i  < z < a t ,  (28) 

where V,, is the normal velocity induced by body 2 on the axis of body 1, 

and 

The term ml(xl, t )  in (28) is inderstood to be zero when x1 < a,. 

and (26) yields the following four relations: 
A straightforward comparison of terms of (28) with those ofa  similar nature in (22) 

(31) m1(%, t )  = - UlS;(%)/2h, 

Note that differentiation of (33) with respect to x1 yields 

y1 = -2a[V,*(~,, t)Cl(z1)]/azl for a i  < x1 < af,  

y1 = -2~,(al)a~.':(al,i)/ax, for x1 < 0,. 

(35) 

(36) 
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A completely analogous procedure can also be carried out for body 2. The resulting 
equationsaresimilarand will not be repeated here. In  both cases, it  is noteworthy that 
the source strength matches as in the case of a single body considered by Tuck (1966) 
whereas the vortex strength cannot be determined until (32) is solved. The physical 
interpretation of (32) is as follows: the cross-flow that body 1 sees is that generated 
by the adjacent body plus the normal velocity induced by its own vortex distribution. 
The axial flow fi(x, t )  along the body, which will determine its sinkage and trim, is 
generated not only by the source distribution of the body itself, but also by the singu- 
larity distribution of the adjacent body. 

The following coupled integro-differential equations for V,* and V," can now be 
derived by making use of (35), (36) and the analogous equations for body 2: 

O( V," dil) 

where the primes denote differentiation with respect to the space variable. The order 
of each term is given below the equations. 

One observes that (37) and (38) resemble a pair of coupled Prandtl lifting-line 
equations with V*C playing the role of bound vorticity on a large-aspect-ratio wing. 
Note further that, although these equations have to be solved for each value oft, it is 
necessary to determine the value of V* in only [ a l ,  a t ]  and [a;, a$], since the quantity 
(V*C)' in the wake is related to V* a t  the trailing edge by (36). 

For two bodies of the same slenderness ratio, the degree to which they interact 
depends on the magnitude of C, and C,. Examination of (37) and (38) shows that the 
possible situations may be divided into the following three cases. 

Case 1: 8, = O(l ) ,  s, = O(1). 

This corresponds to the physical situation where the bottom clearances of both bodies 
are the same order as their drafts. Thus to the leading-order approximation, one notices 
from (37) and (38) that the cross-flow according to a consistent analysis is simply 
that generated by the source distribution of the adjacent, body and that such a 
cross-flow is O(s). 

Case 2: 8, = O(€) ,  8, = O(1). 

The first equation is weakly coupled to  the second. The third term of (37) can be 
omitted when solving for the flow about body 1. V,*, which must be obtained by 
solving (37), is seen to be O(s). On the other hand V:, which is also O(E), can be deter- 
mined in closed form from the right-hand side of (38) and the solution for Vf. These 
arguments, of course, apply also to the converse case 8, = O(l) ,  S, = O(s). 

Case 3: 8, = O(e), 8, = O(E). 
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No simplifications are possible for this case; the coupled equations have to be solved 
simultaneously. An alternative form of (37) and (38) which may be more amenable 
to numerical solution can be obtained by using the vorticity strengths yj as the unknown 
functions instead of the V; : 

which are two coupled Volterra equations of the first kind. 

described in $Q2 and 3 are indeed consistent. From (16), (17) and (35), 
Finally, it  seems worthwhile to show that the inner and outer Kutta conditions 

(VfCj)’dxj  = -2- ci(u7) ” - V;’(a?, t )  for Cj(a3+) = 0, (41) u, at yj(uj-+o,t) = -- 

while from the inner-field condition (27) and the matching condition (36) 

- 2cj(a7) a‘ a Vf(a;,t)l for xj< a;, (42) u, t-P 
yj(xj, t )  = - 2C,(6)- q a - ,  E(x,)) = 

3 axj 

which is clearly identical to  (41) in the limit xj = u; - 0. Note further that, if the flow 
is steady or if the trailing edge is not fin-like yj vanishes at  this edge. 

5. The interaction hydrodynamic force and moment 
Of primary interest in the physical problem being studied are the lateral force and 

moment on each body. There exists also a sinkage force and a trimming moment 
acting on the ‘wetted’ half of the double body. The desired hydrodynamic force or 
moment can be conveniently obtained from the inner field once V* is known from 
solving (37) and (38). If one makes use of the inner potential (18) and the unsteady 
Bernoulli equation, the following expression for the fluid pressure p (  Y ,  2; x, t )  acting 
on, say, body 1 can be derived: 

p(y1, zl; xl, t )  = epl(xI, t )  + e2p2(x1, t )  +WK, 2,; xl, t )  + m 3 ) ,  (43) 

where P,(”l, t ) / P  = - aYl(x1, t ) /a t  + ulf;, (44) 

(45) P2(% t>/P = - 9(ud;)2, 

the symbol ( } denoting the quantity (ail) + V,* <biz)). The time differentiation is 
understood to be with respect to the moving co-ordinate system. In  these expressions, 
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it  is worthwhile to keep in mind that V,* = O(e) and @i2) could be of an order smaller 
thane if the bottom clearance were not small. Note that, because of (34), (31) and (35), 
fl(xl, t )  is O(e). To the leading order, it  is evident that the sinkage force -%"and the 
trimming moment A (about 0,) are due to pl: 

where the contour integral in the cross-flow plane is carried out only for z < 0. The 
expression for pl can be simplified by using (15)  and by recognizing that the time 
dependence of the log and arctangent function in (34) occurs via the variable x2. The 
result is 

where one may recognize that the first term is the usual 'sinkage pressure ' that body 1 
experiences while moving alone in shallow water (Tuck 1966). The second term corre- 
sponds to the axial flow generated by the forward motion of body 2 and the last two 
terms represent the steady and unsteady effects of the adjacent vortex distribution. If 
S2 is O( i), one obtains the following simple expression for and Al : 

where - go and A. are the single-body sinkage force and trimming moment respec- 
tively. The additional term on the right can be used to determine the transient heave 
and pitch motion of ship 1 caused by the motion of ship 2. 

The leading-order lateral force gl comes from Pz, defined by (46). In  differential form, 

which can actually be expressed in terms of the cross-sectional area and the added- 
mass characteristics of the cross-section. This was in fact carried out using momentum 
analysis by Newman (1975) in connexion with the swimming of a slender fish in a deep 
fluid. Since the extension of his analysis to the case of finite depth is sufficiently 
straightforward, it does not warrant another derivation here. In  the present notation, 
the results, after correcting for the double-body effect, can be written as 

where g1 represents the sway force on the 'submerged ' portionof the body. Integrating 
(51) along the length of the body, one gets 
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In  arriving a t  (52) it  was assumed that body 1 was pointed at the bow, hence C,(%+) = 0. 
The yaw moment .A( about 0, can be obtained in an analogous manner by noting that 
d 4  = xld'Yl. The final expression is 

Equations (47), (52) and (53) permit the rapid evaluation of the instantaneous force 
and moment on the individual body once V* is known. The expediency lies in the fact 
that only the overall sectional characteristics of the body are needed, not a detailed 
knowledge of the potentials W) and W2). 

6. Approximate solutions for weakly coupled cases 
The complete solution of (37) and (38) for bodies of arbitrary shape requires 

substantial numerical effort. Before embarking on such a major t,ask it seems worth- 
while to test the practical usefulness of the theory for a few simple cases. Towards this 
end, numerical solutions have been obtained for a few situations that reflect weak 
coupling. 

First, for case 1 in 5 4, one notes that the sway force and yaw moment can be written 
in closed form if 8, and 8, are both O(1). By (37) and (38), or as expected intuitively, 

V? (XI, t )  = Viy)(34, Vz*(%, $1 = V W q ) ,  (54) 

where 
right-hand side of (37) and (38). Next, one observes from (4) that 

and ViF) are thenormal velocities induced by the source distribution, i.e. the 

Thus it follows from (52) and (53) that 

u2 - u, a: Aifx,) V i ~ ) ( x l , t ) d ~ l + ~ / a ~ ~  S; V&y)dXi+ U2A,(ai) V i T ) ( q ,  t ) ,  s.; (56) 
%l/P = 2 

4 / P  = f la: { [(u2 - q) A; f %S;121+ 4hC&)) Vi?)(xi, t ) dx1-k $?2 Ai(a,) &,(a; t )  

These are the shallow-water analogues of the equations given by Tuck &, Newman 
(1974, $2) .  With the exception of the functional representation of Viy) and the values 
of the added-mass coefficients, the deep- and shallow-water cases are identical. 

A less trivial situation would correspond to case 2 discussed in 8 4, in which one needs 
to solve the following Prandtl lifting-line equation to obtain V:(x, t ) :  

(57) 

The complexity introduced by the wake can be avoided if the following two cases are 
considered: (a )  body 1 stationary in space, which corresponds to the situation of 
a moored vessel disturbed by a passing one; ( b )  both bodies moving at the same speed, 
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which corresponds to two vessels moving in a refuelling configuration. The integro- 
differential equation for both cases is 

with the understanding that there is actually no dependence on time for ( b ) .  In non- 
dimensional form, this can be written as 

where Zl = [ 2 ~ ,  - (q+ -ai)]/L1 and 8, = .2C1/L1. Applying the Cauchy inversion 
technique (Muskhelishvili 1958, p. 373), one obtains 

where f, is an unknown constant which is related to the bound circulation on body 1 : 

P, = J1 y,(x,, t )  dX, = V,*( 1) Cl( 1) - V,*( - 1) C,( - 1).  

The second term of (60) represents the homogeneous solution of (59) and must be 
determined by the Kutta condition. 

Case (a)  : body 1 stationary 
If the body ends are pointed, (61) implies that I?, = 0. If the ends are square, it seems 
plausible to  assume that the flow at the ends will be diverted by the blockage, hence 
V*( & 1, t )  = 0. Again, Fl = 0. Thus, in either situation, the homogeneous solution can 
be discarded. Integrating (60) from 2: to the ‘leading edge’ one obtains the following 
Fredholm integral equation of the second kind: 

1 dx’ 1-62 4 1 -xE- ( 1  -p)* ( 1  -9)i 
1 - xg + (1 - p))t (1 - 22) ) t  

where K(z ,  6 )  = Jz - (-) = log [ (5-d) 1 - X I 2  

For a general V$T)(&, t ) ,  (62) has to be solved numerically. Once V t  has been deter- 
mined, (52) and (53) can be used to obtain the sway force and yaw moment. 

Case (b) : steady motion of two bodies 
By (33), the appropriate end condition is ( V*Cl)’ = 0 at the trailing edge 5, = - 1. 
From (60), this implies 

r, = -2J1  -1 ( ~ ~ ) “ V ~ ( S 1 ) - v , l t P , ) l d f , .  I+& (64) 

Substituting the result into (60) and integrating with respect to x, one obtains 
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with 

where to be consistent with (52), the bow has been assumed to be pointed, i.e. el( 1) = 0. 
It can be seen that (65) differs from (62) only by an additional term in the definition of 
the kernel function. The lateral force and yaw moment can be easily obtained from (62) 
and (63) with the time-derivative terms discarded. 

7. Numerical results and discussion 

which the original equation can be written as a system of linear equations: 
The solutions of (62) and (65) are obtained using the method of discretization, by 

where the influence coefficients Kij  are given by 

(El, &, . . . , cN) denoting the set of grid points along the x axis and 2, being the midpoint 
between two successive grid points. Most of the integrals of (68) can be evaluated 
analytically. 

Figures 4(a)  and (b) show the computed lateral force and yaw moment acting on 
a moored lOOK DWT tanker owing to the passage of a 30K DWT tanker. The results 
are plotted ws. the relative position of the vessels, which also represents the time axis. 
The solid lines are speed-averaged experimental values taken from Remery (1974). 
Two sets of theoretical results are given. The dashed lines correspond to the simple 
formulae (56) and (57), which do not account for the effects of blockage. Clearly the 
theoretical predictions are too high. The dotted lines are obtained by solving (62) and 
using (62) and (53). The peak force and moment are reduced substantially but un- 
fortunately fall below the speed-averaged experimental values. Both sets of computa- 
tions use the exact values of Cl(x), which are obtained by using a method discussed in 
Yeung & Hwang (1977), for the lateral-flow problem. These values are depicted in 
an inset in figure 4 (b). 

The force and moment acting on a tug boat moving along the side of a cargo vessel 
in shallow water are shown in figures 6 (a)  and (b ) .  The experimental results are due to 
Dand (1975). The theoretical predictions are obtained by solving (65) for the larger 
ship and determining the subsequent cross-flow incident upon the smaller ship from 
(38). The bow of the tug boat is assumed to be pointed. It is worthwhile to  note that 
while the general behaviour of the experimental curves is predicted fairly well, the peak 
force and moment are substantially underestimated, particularly when the tug boat 
is at  the stern region of the cargo vessel. This underestimation does not appear to be due 
to the neglect of viscosity. It was found that using the computed cross-flow and a drag 
coefficient of 2.0 gives an increase in the predicted value less than 10 yo of the experi- 
mental value. One may question, of course, the validity of applying an outer theory in 
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FIGURE 4. (a) The sway force and (6)  the yaw moment acting on a stationary tanker owing to the 
passage of another. The force coefficient Cy is defined by %Y,/+pU~ B, T ,  a,nd themoment coefficient 
C, by N / ~ p G B , T , .  The geometric parameters are L,/L, = 0.712, "JL, = 0.239, h/T ,  = 1-15 
and h / T ,  = 1.72. Experimental data are speed-averaged values with B',, ranging from 0-155 to 
0.270. ---, theory, T': = Viy); . . . , theory, V: from (62); -, experiment, Remery (1974). 
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FIUURE 5. (a) The sway force and (b )  the yaw moment acting on a tug moving alongside a cargo 
ship. Experimental data are for F,, = 0.345 with sJL,  = 0.128 and h/T, = 1.38. C ,  is defined 
byWY,/~pU~B,T,  and C, byNI/+pUU:B:TI. - , theory; + , experiment, tug without screw, 
Dand (1975); 0, experiment, tug with screw, Dand (1975). 

such close proximity. The ratio of the lateral clearance between the two bodies to the 
length of ship 2 is 0-023. It appears that the main source of error lies in the representa- 
tion of the body in the outer problem by only a first-order source distribution. These 
preliminary comparisons, however, show that the theory discussed portrays the 
qualitative features of ship-to-ship interaction quite well even when the separation 
between ships is not O(1). The case of two ships in steady motion with a separation 
O(E)  was considered by Yeung & Hwang (1977). 
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FIGURE 6. (a) The sway force and (6) the yaw moment acting on two identical vessels in head-on 
encounter with h/T = 1.1 1 and a,/L = 0.5. Cy and C, are non-dimensionalized by &BT( U ,  U,( 
and +pBTLI U ,  V , ]  respectively. - , UI/U 1 -  - - 1.0; - * - * .  , U,/Ul = - 1.5, slower ship; ---, 
u,/u, = - 1.5, fastor ship. 

Finally, the theory presented is applied to geometric configurations that are more 
pertinent to the stated assumptions. Two identical vessels of tanker proportions are 
assumed to have a parabolic sectional area with rectangular cross-sections. Both 
vessels are further assumed to have pointed bows and fin-like sterns. The length-to- 
beam ratio is 6.667 and the beam-to-draught ratio 2.5. The bottom clearance is 
assumed to be 10 yo of the vessel draught. The unsteady interaction force and moment 
are calculated for a ratio of separation to ship length of 0.5, assuming the flow to be 
unblocked [(56) and (67)]. 

Figure 6 shows the instantaneous force and moment for two tankers approaching 
each other. Results for two different speed ratios are given. By moving along the st/L 
axis from right to left, one may visualize these curves as the time history of the 
interaction force and moment. One observes that during the approach each vessel 
experiences initially a repulsive force and a bow-out moment. Just as the lateral 
force becomes attractive the yaw moment becomes bow-in. This corresponds to a 
highly dangerous situation as far as collision is concerned. After the midships have 
crossed, the yaw moment changes to bow-out again, but the attractive force remains 
for some time, which may cause the sterns of the vessels to collide. The several reversals 
of the sign of the yaw moment are of great concern to the helmsman. Another feature 
observable from these curves is that the slower ship experiences a larger force and 
moment than the faster one. This fact is in apparent agreement with what one may 
observe in the operation of a vehicle on a highway. 
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